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Silo Background

Application
Silo Library meshes/materials/variables
HDFS5S PDB arrays/structs/types
VFL
AR - = files/bytes/offsets
|| 5 P SARR= 2

Benefits (= flexibility)

* platform independent, self-describing, archiveable data
* random access (more true of post-processors than simulation codes)

Drawbacks (= performance degradation)

» metadata (data a lib writes on behalf of its caller)
e caller is far removed from actual disk I/O behavior/control



Poor Man’s Parallel 1/O

Truly concurrent, parallel I/O to a single file is problematic

* Difficult to make perform well even for relatively simple I/O patterns.
» The global monolithic “whole” object is decomposed on read, re-composed on write
* Does not support multi-physics codes where 1I/O patterns are more complex

Poor Man’s Parallel 1/0: Parallelism at the price of multiple files

* Serial I/0 to multiple files, simultaneously

* #files |= #MPI-tasks

* Very flexible with what each MPI-task needs to do in the way of 1/0O

* Do not pay cost of “decomposing on read” and “recomposing on write”
» Note: Lustre can't tell the difference (almost)



I/O Performance
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Aggregation 1s key
to improving performance

Aggregation
» Gather many smaller requests into fewer larger ones
» Need memory to do this.
 Try aggregating as much as possible WITHIN one MPI-task first.
e Failing that, start aggregating ACROSS MPI-tasks.



Simple Aggregation Strategies

HDF5’s Core VFD:

* Stores everything to a growing buffer in memory.

» Writes buffer to file on close.

» Reads ENTIRE file to memory buffer on open.

* Represents upper-bound of what is possible at expense of (a lot) of memory.

» Only works if when code does I/0O, it is dumping less than 50% of available memory.
* Not a good long term solution

HDFS5’s Split VFD:

* Splits data into two classes,; raw and meta, writing each to its own VFD.
» Metadata uses core VFD, raw data uses sec2 VFD
» Improves performance but at price of two files on disk per one created by app.



Si1lo’s new Block VFD for Dawn

Breaks virtual file into blocks

mem
BRI RS
M fle
RIS RIS

Does 1/0 only in blocks

» Allocates enough memory to keep N blocks in memory; uses LRU to pre-empt.

Two Parameters set by code

* SILO_BLOCK_SIZE ( should be multiple of filesystem blocksize)
* SILO_BLOCK_COUNT (more is better)

Good Values for Dawn

* SILO_BLOCK_SIZE = (1<<20)
* SILO_BLOCK_COUNT=16 (16 Megabytes total)



Other VFDs We May Write

Remote-Core VFD

» Use extra MPI-tasks just for 1/0O

* Code “writes” to memory in these extra MPI-tasks through enhanced core VFD
» Code goes back to compute while data drains to files from the extra MPI-tasks
 Should be absolute fastest as code doesn’t ever wait for disk; just MPI-send(s).

Smart-Split VFD:

» Only one file is produced
* Raw data is block buffered as in new Silo VFD
» Metadata is kept in memory until file close, then tacked onto end of file

Extend Block VFD to stripe across MPI-tasks

task O task 1 mem
RIS I
M file
s

* Let application “think” its writing to different files
» What if each MPI-task is writing wildly different amounts of data?
* May be possible to make this completely transparent to HDF5
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